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MATHEMATICAL MODELLING BY SYMBOLIC MATHEMATICAL COMPUTATION - 

A COSMOLOGICAL  APPLICATION 

James C. Howard 

Ames Research  Center 

SUMMARY 

The advantages  of  symbolic  mathematical   computation are most   ev ident   in  
p rob lems   ana logous   t o   t hose   desc r ibed   i n   t h i s   r epor t ;   t ha t  i s ,  t h e   a p p l i c a t i o n  
o f   t he  method to   r econs t ruc t ing   s eve ra l   ex i s t ing   cosmolog ica l  models  and t h e i r  
a s soc ia t ed   t r a j ec to ry   equa t ions .  The f i e l d   e q u a t i o n s   t h a t   g o v e r n   t h e   t r a j e c -  
t o r i e s   o f   b o d i e s   i n   s p a c e   h a v e ,   i n   g e n e r a l ,   l a r g e  numbers of terms., with  each 
term a complicated  mathematical   expression. The eva lua t ion  of t hese  terms and 
the   de r iva t ion   o f   t he   equa t ions   o f   t he   geodes i c s   t ha t   desc r ibe   t he   t r a j ec -  
t o r i e s   o f   bod ie s   i n   space ,   r equ i r e  a s u b s t a n t i a l  amount o f   a lgeb ra i c  manipu- 
l a t i o n  and  symbolic  differentiation.  For  the  models  considered,  the  required 
opera t ions  were executed  with  speed  and  efficiency on  an IBM 360/67  computer. 
For  example, i n   t h e  case o f   t he  nonhomogeneous Schwarzschild  model,  the com- 
p u t e r  times r e q u i r e d   t o   f o r m u l a t e   t h e   f i e l d  and t r a j e c t o r y   e q u a t i o n s  were 
0.74  and  0 .30  minutes ,   respect ively.  By mechaniza t ion   of   the   p rocedure   in   the  
manner descr ibed ,  man hours are s a v e d ,   t h e   p o s s i b i l i t y   o f   e r r o r  i s  reduced, 
and the   scope   of   the   inqui ry  may be  extended. 

INTRODUCTION 

Many problems in   mathemat ica l   phys ics   involve   the   formula t ion   of  complex 
models of  physical   systems or processes   and   the   manipula t ion   of   l a rge   se t s   o f  
n o n l i n e a r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  The  manual  performance  of  these 
opera t ions  i s  time consuming,   subject   to  human e r r o r ,  and i n   c e r t a i n  cases 
impossible.  

In   recent   years   mathematical   manipulat ion  and  the  formulat ion  of  mathemat- 
i ca l  models   have   been   fac i l i t a ted  by the  use  of   digi ta l   computers   equipped 
with  formula  manipulation  compilers (FORMAC) and  by the  development  of com- 
puter  programs  designed  to  perform a var ie ty   of   non-numeric   operat ions 
( r e f .   1 ) .   I n   r e f e r e n c e s  2 and 3 ,  it  i s  shown how symbolic  mathematical com- 
p u t a t i o n  was u s e d   t o   o b t a i n   t h e   C h r i s t o f f e l  symbols  of  the f irst  and  second 
k i n d s   f o r  1 2  o r thogonal ,   curv i l inear   coord ina te   sys tems.   In   re fe rences  4 and 
5 it i s  shown how an IBM 7094 d i g i t a l  computer,  equipped  with FORMAC, can be 
used   t o   de r ive   t he   equa t ions   o f   mo t ion   o f  a p a r t i c l e   i n  any   curv i l inear   coord i -  
nate   system  requested  by  the  user .   In   reference 6 it i s  ind ica t ed  how t h e s e  
methods  can f a c i l i t a t e  the   der iva t ion   of   the   Navier -S tokes   equat ions  of f l u i d  
motion  and  the  continuity  equation. 



The present  report  indicates  how  symbolic  mathematical  computation  can  be 
used  to  formulate  a  variety  of  cosmological  models.  Each  model  is  determined 
by  the  metric of the  Riemannian  Space,  and  the  only  inputs  required  are  the 
metric  coefficients of the  fundamental  quadratic  form. For illustrative  pur- 
poses,  only  spherically  symmetric  static  models  are  considered. It should  be 
emphasized,  however,  that  the  method  described  is  equally  applicable  to  less 
restricted  models,  and  nonstatic  models  can  be  formulated  with  equal  facility. 
The  determination  of  the  geodesics  that  describe  the  trajectories of bodies  in 
space  requires  that  the  appropriate  potential  functions  be  known.  The  rela- 
tivistic  analog of Poisson's  equation,  which  in  the  Newtonian  theory  connects 
a  single  gravitational  potential  function  with  the  density  of  matter,  is  a 
relation  between  the  potential  functions  and  the  components  of  the  energy 
momentum  tensor.  In  general,  this  relationship  gives  rise  to 10 nonlinear 
partial  differential  equations.  The  solution of these  equations  then  yields 
the  potential  functions  and  must  precede  any  attempt  to  obtain  the 
corresponding  trajectories. 

ANALYSIS 

Field  and  Trajectory  Equations 

Consider  the  equation  of  motion  of  a  particle  that  is  moving  under  the 
influence of  gravitational  forces.  When  the  equation  is  written  in  the  nota- 
tion of the  tensor  calculus,  it  assumes  the  following  form  (ref. 5) :  

where  i,j,k = 1,2,3 l 
and 

In  these  equations  the  summation  convention  is  assumed.  That  is  to  say, 
if  in  any  term  an  index  occurs  twice,  the  term  is  to  be  summed  with  respect  to 
that  index  for  all  admissible  values  of  the  index. 

In  relativistic  mechanics,  equation  (1)  is  replaced  by  the  following 
trajectory  equation  (ref. 7) : 

($ + ( i } dxj  dxk) = 

i,j,k = 1,2,3,4 

jk dsds (3)  
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where  the  line  element  ds  satisfies  the  fundamental  quadratic  form 

ds2 = g dxi  dxj ij 

The  Newtonian  theory of gravitation  connects  a  single  potential  function 
4 with  the  density of matter.  In  this  theory,  the  gravitational  potential 
function  is  required  to  satisfy  Poisson's  equation  (ref. 7). 

024 = -4mp (5) 

At  all  points of space  devoid of matter P = 0 and  Poisson's  equation 
reduces  to  Laplace's  equation 

024 = 0 (6) 

The  relativistic  analog of Poisson's  equation  is  the  following  tensor 
equation  (ref. 8 ) .  

1 
Ri j - Rgij + hgij = - K T ~ ~  ( 7 )  

By raising  indices,  the  field  equations  can  be  written  in  the  alternative 
form 

Contraction of equation ( 8 )  yields 

R - 4h = KT ( 9 )  

In  regions of space  devoid of  matter,  all  the  components of the  energy 
momentum  tensor  are  zero,  and  equation (9) simplifie's  accordingly.  In  this 
case 

R = 4h (10) 

When  this  result  is  substituted  in  equation (71, the  field  equations 
assume  the  form 

Nevertheless,  in  empty  space,  the  trajectories of bodies  moving  within 
the  solar  system  correspond  with  great  precision  to  the  simpler  field  equations 
(ref. 8). 

where 

3 



ax 

Equation (12)  is  the  relativistic  analog of the  Lapace  equation. It 
represents  10  nonlinear  partial  differential  equations  for  the  10  unknown 
functions . Once a set of potential  functions  gij  satisfying  equa- 
tion (8) o r  (12) is  found,  the  corresponding  trajectory  equations  can  be 
formulated. 

gij 

COMPUTER  APPLICATIONS 

0 

For  the  purpose  of  illustrating  the  modelling  capability of  symbolic 
mathematical  computation,  a  spherically  symmetric  static  field is assumed. 
This  assumption  implies  that  the  metric  tensors are  spherically sym- 
metric  and  independent of the  time.  Moreover,  the  metric  tensors  must be 
chosen  in  such  a  way  that  the  line  element  will  reduce  to  the  special  relativ- 
ity  form for flat  space-time.  These  considerations  led  to  the  adoption  of  the 
following  set of metric  tensors  for  anisotropic  space. 

gij 

7 
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where the   impl ic i t   func t ions   L(x l )   and  M(xl) c a n   b e   a d j u s t e d   t o   a c c o u n t   f o r  
t h e   d i s t o r t i o n  of  s p a c e   i n   t h e   p r e s e n c e   o f  matter. The corresponding  space- 
time i n t e r v a l  i s  

where 

and 

dx4 = c d t  

x1 r ad ia l   coo rd ina te  

X po la r   ang le   coo rd ina te  

X azimuthal   angle   coordinate  

and f o r   c o n v e n i e n c e   t h e   v e l o c i t y   o f   l i g h t  i s  assumed e q u a l   t o  1. 

If the   space  i s  assumed t o  be   i so t rop ic ,   t he  metric t enso r s  are modified 
as fol lows : 

The s p a c e - t i m e   i n t e r v a l   i n   t h e   i s o t r o p i c   c a s e  i s  

In   o rder   to   demonst ra te   the   feas ib i l i ty   o f   us ing   symbol ic   mathemat ica l  
computa t ion   t o   ob ta in   d i f f e ren t   mode l s   o f   t he   un ive r se ,  a computer  program1 
was w r i t t e n   t h a t   r e q u i r e d   o n l y   t h e   p o s t u l a t e d  metric t e n s o r s  as inpu t s .  

" 

'The computer  program  and related  documentat ion are a v a i l a b l e  from 
Computer Software Management and Information  Center (COSMIC), Barrow Hall, 
University  of  Georgia,   Athens,   Georgia,  30601. 

5 



Applicat ions  to   Cosmological  Models 

Anisotropic model- The f i e l d   e q u a t i o n s  and the   co r re spond ing   t r a j ec to ry  
e q u a t i o n s   f o r   t h i s   c o n d i t i o n   c a n   b e   o b t a i n e d   b y   u s i n g   t h e   t e n s o r s   d e f i n e d   i n  
equat ions  (17) .  With these   t enso r s  as i n p u t s   t o  a 360/67 d i g i t a l  computer 
which was programmed t o   d e r i v e  models o f   t he   un ive r se ,   t he   fo l lowing   ou tpu t  
was obtained.  

The metric c o e f f i c i e n t s   d e t e r m i n e   t h e   g r a v i t a t i o n a l  model be ing   s tud ied .  
In o r d e r   t h a t   e a c h   r u n   b e   i d e n t i f i e d   w i t h   t h e   c o r r e c t   i n p u t s ,   t h e   p o s t u l a t e d  
metric c o e f f i c i e n t s  are p r i n t e d   o u t   b e f o r e   t h e  main r e s u l t s .   I n   t h e  case 
under   cons idera t ion ,   these   have   the   fo l lowing   va lues  

G(2,2) = -X(1) 2 

G(3,3) = -SIN (X(2))X(1) 2 2 

G(4,4) = E M -  (X (1) ) 

The program  uses  the metric t e n s o r   i n p u t s   t o   e v a l u a t e   t h e   C h r i s t o f f e l  
symbols of t h e  f irst  and  second  kinds. In  o r d e r   t o   r e d u c e   t h e  amount o f  ou t -  
p u t ,   t h e   C h r i s t o f f e l  symbols of t h e  first k ind  are no t   p r in t ed   ou t .   I n   t e rms  
of   the  system  coordinates  and t h e  unknown func t ions  L and M y  t h e   C h r i s t o f f e l  
symbols of the   second  k ind  are 

T ( l , l , l )  = (1/2)L(1).  (X(1)) 

T(1,1,2) = 0 

T(1,1,3) = 0 

T(1,1,4) = 0 

T(1,2,1) = 0 

T(1,2,2) = 1 / X ( 1 )  

T(1,2,3) = 0 

T(1,2,4) = 0 

T(1,3,1) = 0 
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T(1 ,3 ,2 )  = 0 

T(1 ,3 ,3 )  = 1 / X ( 1 )  

T (1 ,3 ,4 )  = 0 

T ( l Y 4 , 1 )  = 0 

T(1 ,4 ,2 )  = 0 

T(1 ,4 ,3 )  = 0 

T ( 1 , 4 , 4 )  = (l /2)M(1).  ( X ( 1 ) )  

T ( 2 , l Y 1 )  = 0 

T(2 ,1 ,2 )  = 1 / X ( 1 )  

T ( 2 , 1 , 3 )  = 0 

T ( 2 , 1 , 4 )  = 0 

T ( 2 , 2 , 1 )  = -E - L *  (X(1))  
X ( 1 )  

T ( 2 , 2 , 2 )  = 0 

T ( 2 , 2 , 3 )  = 0 

T ( 2 , 2 , 4 )  = 0 

T ( 2 , 3 , 1 )  = 0 

T ( 2 , 3 , 2 )  = 0 

T ( 2 , 3 , 3 )  = COS(X(2)>/SIN(X(2))  

T ( 2 , 3 , 4 )  = 0 

T ( 2 , 4 , 1 )  = 0 

T ( 2 , 4 , 2 )  = 0 

T(2 ,4 ,3 )  = 0 

T ( 2 , 4 , 4 )  = 0 

T ( 3 , l Y 1 )  = 0 

T ( 3 , 1 , 2 )  = 0 

T ( 3 , 1 , 3 )  = 1 / X ( 1 )  

7 
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I , '  . 

', 
I .  , 

.,, 
I '  

r .  

T(3,1 ,4)  = 0 

T(3 ,2 ,1 )  = 0 . 

T(3 ,2 ,2 )  = 0 

T(3 ,2 ,3 )  = COS(X(2))/SIN(X(2)) 
' -. 

T(3,2 ,4)  = 0 

T(3 ,3 ,1 )  = -E -L' (x(1))SIN2(X(2))X(l) 

T (3 ,3 ,2 )  = -COS(X(2))SIN(X(2)) 

T(3 ,3 ,3)  = 0 

T(3,3,4)  = 0 

T(3,4,1)  = 0 

T(3 ,4 ,2 )  = 0 

T(3 ,4 ,3)  = 0 

T(3 ,4 ,4)  = 0 

T(4 ,1 ,1 )  = 0 

T(4,1,2)  = 0 

T(4 ,1 ,3 )  = 0 

T(4 ,1 ,4)  = (1/2)M("* ( X ( 1 ) )  

T(4 ,2 ,1)  = 0 

T(4 ,2 ,2 )  = 0 

T(4 ,2 ,3 )  = 0 

T(4 ,2 ,4)  = 0 

T(4 ,3 ,1)  = 0 

T(4 ,3 ,2 )  = 0 

T(4 ,3 ,3 )  = 0 

T(4 ,3 ,4)  = 0 
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+E -L. ( x ( l ) ) - l  
R ( 2 , 3 )  = 0 

R ( 2 , 4 )  = 0 

R ( 3 , l )  = 0 

R ( 3 , 2 )  = 0 

R ( 3 , 3 )  = - ( 1 / 2 ) E  - L '  ( x ( l ) ) L ( l ) -   ( X ( l ) ) S I N 2 ( X ( 2 ) ) X ( 1 )  

+ ( 1 / 2 ) E  - L '  ( x ( l ) ) M ( l )  - ( X ( l ) ) S I N 2 ( X ( 2 ) ) X ( l ) + E -  

- S I N 2  (X ( 2 )  ) 

R ( 3 , 4 )  = 0 

R ( 4 , l )  = 0 

R ( 4 , 2 )  = 0 

R ( 4 , 3 )  = 0 

L .  (X  
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R(4,4) = -E - L *  ( ' ( l ) )M(l) .   (x( l ) ) /X(l)  

- ( 1 / 4 ) ~  ('(l))M(l) .2(x(1))  

+ (1/4) E -L '  (x(l))M(l).  (x(1))Lc1). ( X ( 1 ) )  

- (1/2)E 
- L '  (x(1))M(2).  (x(1)) 

G ( 1 , J )  and R ( 1 , J )  are both known a t  t h i s   s t a g e   o f   t h e  program; t h e r e f o r e  
t h e  Ricci scalar can  be  obtained.  I t  i s  given by the   fo l lowing   equat ion  

R = -2E (X(1) ) /X(1)2+2E-L.   (x( l ) )L( l ) .   (X( l ) ) /x( l )  

- 2E - L '  (x(l))M(l) - (X( l ) ) /X( l )  - (1/2)E -Le (XI1)lM(1)  .2(x(1)) 

+ (1/2)E  ( ' ( l ) )M(l) .   (X(l))L(l) .   (X(l))-E - L *  (x(1))M(2) - (X(1))+2/X(1)2 

The preceding  information i s  n e x t   u s e d   t o   o b t a i n   t h e   f i e l d   e q u a t i o n s .  
The ind iv idua l   equa t ions  are 

ET(1,l)  = E (x(1))/X(l)2+L(1) - (X( l ) ) / (E  L .  ( x ( l ) ) ) x ( l )  

-E - L '  (x( l ) 'L( l ) -   (X(l)) /X(l)+E -L '  (x( l ) )M(l)   (X(l)) /X(l)  

- (1/4)Mc1)-2(X(l)) / (E L- CX(1))) 

+(1/4)M(1) - (X(1))LC1) - (X( l ) ) /  (E L '  (x(1)))-  (1/2)Mc2) * (X( l ) ) /  (E L -  CX(1))) 

ET(1,2) = 0 

ET(1,3) = 0 

ET(1,4) = 0 

ET(2,l) = 0 
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ET(2,3) = 0 

ET(2,4) = 0 

ET(3,l)  = 0 

ET(3,2) = 0 

ET(3,4) = 0 

ET(4,l) = 0 

ET(4,2) = 0 

ET(4,3) = 0 

ET(4,4) = E - L '  cx(1))/X(1)2-E-L'   (x(l))L(l)-   (X(1))/X(1)-1/X(1)2 

The choice  of  an  energy momentum t enso r   comple t e s   t he   spec i f i ca t ion  of 
t h i s   t y p e  o f  model.  Solution o f  t he   r e su l t i ng   equa t ions   g ives  r ise  t o   t h e  
components o f  t h e   p o t e n t i a l   f u n c t i o n .  In  the   case   under   cons idera t ion ,   the  
s o l u t i o n   y i e l d s   t h e  unknown funct ions  L(xl)  and  M(xl).  In terms o f  t h e  
pos tu l a t ed  metric tensor   inputs ,   the   computer   der ives   the   equat ion   of   the  
t r a j e c t o r i e s  as fol lows : 

A(l)  = -(1/2)L(1).  (X(1))V(1)2+E-L'  cxc133X(1)V(2)2 

+E -L. (x(1))SIN2(X(2))X(1)V(3)2 

~ - (1/2)E- 
(X(1))+"  (X(1))M(1).  (x(l))v(4)2 
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A(2) = -2V(2)V(1)/X(1)+COS(X(2))SIN(X(2))V(3)2 

A(3) = -2V(3)V(l)/X(1)-2COS(X(2))V(3)V(2)/SIN(X(2)) 

A(4) = -M(l)-   (X(l))V(4)V(l)  

Isotropic mode2- If t h e   u n i v e r s e  i s  i s o t r o p i c ,   t h e   l i n e   e l e m e n t  w i l l  
assume t h e  form of   equat ion  (20) .  When the  corresponding metric t enso r s  
(eq.   (19)) were used as i n p u t s   t o   t h e  computer  program,  the  following  output 
was obtained.  

The m e t r i c   c o e f f i c i e n t s   d e t e r m i n e   t h e   g r a v i t a t i o n a l  model be ing   s tud ied .  
I n   o r d e r   t h a t   e a c h   r u n   b e   i d e n t i f i e d   w i t h   t h e   c o r r e c t   i n p u t s ,   t h e   p o s t u l a t e d  
metric c o e f f i c i e n t s  are p r i n t e d   o u t   b e f o r e   t h e  main r e s u l t s .   I n   t h e   c a s e  
under   considerat ion,   these  have  the  fol lowing  values:  

The program  uses  the metric t e n s o r   i n p u t s   t o   e v a l u a t e   t h e   C h r i s t o f f e l  
symbols  of t h e  f i r s t  and  second  kinds.   In  order  to  reduce  the amount of   ou t -  
p u t ,   t h e   C h r i s t o f f e l  symbols  of  the f irst  kind are no t   p r in t ed   ou t .   I n   t e rms  
of   the  system  coordinates  and t h e  unknown funct ions  L and M ,  t h e   C h r i s t o f f e l  
symbols  of  the  second  kind are: 

T ( l , l , l )  = (1/2)Lc1)-(X(1))  

T(1,1,2) = 0 

T(1,1,3) = 0 

T(1,1,4) = 0 

T(1,2,1) = 0 

T(1,2,2)  = l /X(l)+  (1/2)L( ' ) -   (X(1))  

T(1,2,3) = 0 

T(1,2,4) = 0 

T(1,3,1) = 0 

1 2  



T(1 ,3 ,2 )  = 0 

T(1 ,3 ,3 )  = 1/X(1)+(1/2)Lc1) .  (x(1)) 
T(1 ,3 ,4 )  = 0 

T(1 ,4 ,1 )  = 0 

T(1 ,4 ,2 )  = 0 

T ( 1 , 4 , 3 )  = 0 

T(1 ,4 ,4 )  = (1/23MC1)* ( X ( 1 ) )  

T (2 ,1 ,1 )  = 0 

T ( 2 , 1 , 2 )  = l / X ( ~ ) + ( 1 / 2 ) L ( ” . ( X ( l ) )  

T ( 2 , 1 , 3 )  = 0 

T ( 2 , 1 , 4 )  = 0 

T(2 ,2 ,1 )  = -X( l ) - (1 /2 )L( ’ ) -   (X(1 ) )X(1)2  

T ( 2 , 2 , 2 )  = 0 

T ( 2 , 2 , 3 )  = 0 

T ( 2 , 2 , 4 )  = 0 

T(2 ,3 ,1 )  = 0 

T ( 2 , 3 , 2 )  = 0 

T ( 2 , 3 , 3 )  = COS(X(2>>/SIN(X(2))  

T ( 2 , 3 , 4 )  = 0 

T ( 2 , 4 , 1 )  = 0 

T ( 2 , 4 , 2 )  = 0 

T ) 2 , 4 , 3 )  = 0 

T(2 ,4 ,4 )  = 0 

T(3 ,1 ,1)  = 0 

T ( 3 , 1 , 2 )  = 0 

T(3 ,1 ,3)  = 1/X(1)+(1/2)I.,(1) - ( X ( 1 ) )  
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T ( 3 , 1 , 4 )  = 0 

T ( 3 , 2 , 1 )  = 0 

T(3 ,2 ,2 )  = 0 

T(3 ,2 ,3 )  = COS(X(2))/SIN(X(2)) 

T ( 3 , 2 , 4 )  = 0 

T ( 3 , 3 , 1 )  = -SIN  (X(2))X(1)-1/2L(1)-  (X(1))SIN2(X(2))X(1)2 2 

T ( 3 , 3 , 2 )  = -COS(X(Z))SIN(X(Z)) 

T ( 3 , 3 , 3 )  = 0 

T ( 3 , 3 , 4 )  = 0 

T ( 3 , 4 , 1 )  = 0 

T ( 3 , 4 , 2 )  = 0 

T ( 3 , 4 , 3 )  = 0 

T ( 3 , 4 , 4 )  = 0 

T ( 4 , 1 , 1 )  = 0 

T ( 4 , 1 , 2 )  = 0 

T ( 4 , 1 , 3 )  = 0 

T ( 4 , 1 , 4 )  = (1 /2 )MC1)*   (x (1 ) )  

T ( 4 , 2 , 1 )  = 0 

T ( 4 , 2 , 2 )  = 0 

T ( 4 , 2 , 3 )  = 0 

T ( 4 , 2 , 4 )  = 0 

T ( 4 , 3 , 1 )  = 0 

T ( 4 , 3 , 2 )  = 0 

T ( 4 , 3 , 3 )  = 0 
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T(4,4,2) = 0 

T(4,4,3) = 0 

T(4,4,4) = 0 

Once t h e   C h r i s t o f f e l  symbols  of the  second  kind are known, t h e  components 
o f  t h e  Ricci tensor   can   be   der ived .  The i n d i v i d u a l  components are: 

+L(2)-  (X(1))+(1/2)M(2)-  (X(1)) 

R(1,2) = 0 

R(1,3) = 0 

R(1,4) = 0 

R(2, l )  = 0 

R(2,3) = 0 

R(2,4) = 0 

R(3, l )  = 0 

R(3,2) = 0 

R(3,3) = (3/2)Lc1)- (X(l))SIN2(X(2))X(1)+(l/2)M(1). (X(l))SIN2(X(2))X(1) 

+(1/2)  L(2).  (X(1))SIN2(X(2))X(1)2 
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R(3,4) = 0 

R(4 , l )  = 0 

R(4,2) = 0 

G ( I  ,J) and  R(I , J) are both known a t  t h i s   s t a g e   o f   t h e  program; t h e r e f o r e  
t h e  Ricci scalar can  be  obtained. I t  i s  given by the   fo l lowing   equat ion  

R = -4E (x( l ) )L( l )*   (X( l ) ) /X( l ) -2E  -L ' (x( l ) )M(l ) -   (X( l ) ) /X( l )  

The preceding  information i s  n e x t   u s e d   t o   o b t a i n   t h e   f i e l d   e q u a t i o n s .  
The ind iv idua l   equa t ions   a re  

ET(1,l) = - L ( l ) -   ( X ( l ) ) / ( E  L *  (x(1)))X(1)+2E - L -  (x ( l ) )L( l )  * (X( l ) ) /X( l )  
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ET(1,2)  = 0 

ET(1,3) = 0 

ET(1,4) = 0 

ET(2 , l )  = 0 

ET(2,2) = (1/2)E - L .  (x( l ) )L( l )  - ( X ( l ) ) / X ( l ) + ( l / 2 ) E  - L .  ( x ( l ) ) M ( l )  - ( X ( l ) ) / X ( l )  

ET(3,4)  = 0 

E T ( 4 , l )  = 0 

ET(4,2)  = 0 

ET(4,3)  = 0 

ET(4,4)  = 2E - L '  ( x ( l ) ) L ( l ) -  ( X ( l ) ) / X ( l ) +   ( 1 / 4 ) E  

+E-L.   (x(1))L(2) .   (X(1))  

T h e   t r a j e c t o r y  equations for t he  i so t ropic  case are: 

A ( l )  = - (1 /2 )L( ' ) -  (X(1))V(1)2+X(l)V(2)2+(1/2)L(1)* (X(1))X(1)2V(2)2 

+SIN2(X(2))X(1)V(3)2+(l/2)L(1). (X(l))SIN2(X(2))X(1)2V(3)2 

- (1 /2)E -La ( X ( 1 ) ) + M .  ( X ( 1 ) ) M ( 1 ) .  ( x ( l ) ) v ( 4 ) 2  
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A(2) = -2V(2)V(1)/X(1)-L(13. (X(l))V(2)V(l)+COS(X(2))SIN(X(2))V(3)2 

A(3) = -2V(3)V(1)/X(1)-Lc1)- (X(l))V(3)V(l)-2COS(X(2))V(3)V(2)/SIN(X(2)) 

A(4) = -M(l)-   (X(l))V(4)V(l)  

S ta t i c  homogeneous modets- I n   t h e  case of  a s t a t i c  homogeneous universe ,  
i t  i s  evident   that   coordinates   can  be  chosen s o  tha t   t he   l i ne   e l emen t  w i l l  
e x h i b i t   s p h e r i c a l  symmetry  around  any  desired  origin,   since a l l  p a r t s   o f   t h e  
universe   a re   permanent ly   a l ike .  Hence, t he   l i ne   e l emen t  may be   t aken   i n   t he  
s p h e r i c a l l y   s y m m e t r i c   s t a t i c  form  of  equation  (18).   In  obtaining  this  form  of 
l i n e   e l e m e n t ,   l o c a l   i r r e g u l a r i t i e s   i n   t h e   g r a v i t a t i o n a l   f i e l d ,  which  would 
occur   in   the  immediate   neighborhood  of   individual  stars o r  s t e l l a r  systems, 
a r e   neg lec t ed .  

For the  system  descr ibed,  it can  be shown t h a t   t h e  components o f   t h e  
energy momentum t enso r   a r e :  

ET(1,l) = ET(2,2) = ET(3,3) = 8np0 

ET(4,4) = - 8 ~ 9 ~  (21) 

ET(1,J) = 0 f o r  I # J 

where p o  and p o  are the   p ressure   and   dens i ty ,   respec t ive ly ,  as measured  by 
an  observer who i s  a t  least   momentar i ly  a t  rest w i t h   r e s p e c t   t o   t h e   s p a t i a l  
axes.  The so lu t ion   o f   t hese   equa t ions   g ives   r i s e   t o   t he  components of   the  
p o t e n t i a l   f u n c t i o n .   I n   t h e  case o f   t h e   f i e l d   b e i n g   c o n s i d e r e d ,   t h e   s o l u t i o n  
y i e l d s   t h e  unknown functions  L(xl)   and  M(xl).  

I n   o r d e r   t o   s a t i s f y   t h e   c o n d i t i o n s   o f  s t a t i c  homogeneity, it can  be shown 
that   the   implici t   funct ions  L(xl)   and M(xl) a r e   s u b j e c t   t o   t h e   f o l l o w i n g  
c o n s t r a i n t s :  I f  t h e  model i s  homogeneous, t h e   p r e s s u r e  as measured  by a l o c a l  
observer  will be   the  same everywhere.  Again, owing t o   t h e  assumed  homogeneity 
o f  t he  model, t h e   d e n s i t y  w i l l  be   the same everywhere.   Moreover,   the  l ine 
element  must  reduce t o   t h e   s p e c i a l   r e l a t i v i t y  form, f o r  f l a t  space-time, owing 
t o   t h e  known v a l i d i t y   o f   t h e   s p e c i a l   t h e o r y   i n   s u c h   r e g i o n s .  By imposing 
these   condi t ions ,  it can  be shown t h a t   t h e r e  are o n l y   t h r e e   p o s s i b i l i t i e s   f o r  
a s t a t i c  homogeneous  model ( r e f .  8 ) :  

M =  0 (22) 

L + M = O  (23) 

L = M = O  (24) 

These   cond i t ions   l ead   r e spec t ive ly   t o   t he   E ins t e in ,   t he   de   S i t t e r ,  and t h e  
s p e c i a l   r e l a t i v i t y   l i n e   e l e m e n t s .  
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me  Eins te in  model universe- Substitution  from  equation (22)  in 
equation  (18)  yields  the  following  metric  for  a  homogeneous  model  which  is  not 
isotropic. 

ds2 = [-eL(xl) (&1)2 - (x1 &2).2 - (x’ sin x2 d ~ ~ ) ~  + (d~~)~] (25) 

If the  model  were  assumed  to  be  homogeneous  and  isotropic,  it  would  be 
necessary  to  use  equation  (20)  subject  to  the  constraint  equation  (22). 

Cosmological  considerations  led  Einstein  to  consider  a  universe  defined 
by  the  metric (25). When  the  metric  coefficients  were  supplied  as  input  to 
the  computer  program,  the  following  output  was  obtained. 

The  metric  coefficients  determine  the  gravitational  model  being  studied. 
In  order  that  each  run  be  identified  with  the  correct  inputs,  the  postulated 
metric  coefficients  are  printed  out  before  the  main  results.  In  the  case 
under  consideration,  these  have  the  following  values: 

G(1,l) = -E 

G(2,2) = -X(1) 

L- (X (1) 1 
2 

G(3,3) = -SIN2(X(2))X(1)2 

G(4,4) = 1 

The  program  uses  the  metric  tensor  inputs  to  evaluate  the  Christoffel 
symbols  of  the  first  and  second  kinds.  In  order  to  reduce  the  amount  of  out- 
put,  the  Christoffel  symbols  of  the  first kind are  not  printed  out.  In  terms 
of the system  coordinates  and  the  unknown  functions L and M, the  Christoffel 
symbols of the  second  kind  are 

T(1,1,2) = 0 

T(1,1,3) = 0 

T(1,1,4) = 0 

T(1,2,1) = 0 

T(1,2,2) = l/X(l) 

T(1,2,3) = 0 

T(1,2,4) = 0 

T(1,3,1) = 0 
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20 

T(1 ,3 ,2)  = 0 

T(1 ,3 ,3)  = 1 / X ( 1 )  

T (1 ,3 ,4 )  = 0 

T ( l Y 4 , 1 )  = 0 

T(1 ,4 ,2 )  = 0 

T ( 1 , 4 , 3 )  = 0 

T(1 ,4 ,4 )  = 0 

T ( 2 , 1 , 1 )  = 0 

T ( 2 , 1 , 2 )  = 1/X(1) 

T ( 2 , 1 , 3 )  = 0 

T(2 ,1 ,4 )  = 0 

T(2 ,2 ,1 )  = -E -L .  ( x ( l ) ) x ( l )  

T (2 ,2 ,2 )  = 0 

T ( 2 , 2 , 3 )  = 0 

T ( 2 , 2 , 4 )  = 0 

T(2 ,3 ,1 )  = 0 

T ( 2 , 3 , 2 )  = 0 

T ( 2 , 3 , 3 )  = COS(X(2)) /SIN(X(2))  

T ( 2 , 3 , 4 )  = 0 

T ( 2 , 4 , 1 )  = 0 

T ( 2 , 4 , 2 )  = 0 

T ( 2 , 4 , 3 )  = 0 

T ( 2 , 4 , 4 )  = 0 

T ( 3 , 1 , 1 )  = 0 

T ( 3 , 1 , 2 )  = 0 

T ( 3 , 1 , 3 )  = 1/X(1) 



T(3 ,1 ,4 )  = 0 

T(3 ,2 ,1 )  = 0 

T(3 ,2 ,2 )  = 0 

T(3 ,2 ,3 )  = COS(X(2))/SIN(X(2)) 

T (3 ,2 ,4 )  = 0 

T(3 ,3 ,1 )  = -E-L' cx(1))SIN2(X(Z))X(1) 

T(3 ,3 ,2 )  = -COS(X(2))SIN(X(2)) 

T (3 ,3 ,3 )  = 0 

T(3 ,3 ,4 )  = 0 

T(3 ,4 ,1 )  = 0 

T(3 ,4 ,2 )  = 0 

T ( 3 , 4 , 3 )  = 0 

T(3 ,4 ,4 )  = 0 

T ( 4 , 1 , 1 )  = 0 

T ( 4 , 1 , 2 )  = 0 

T ( 4 , 1 , 3 )  = 0 

T ( 4 , 1 , 4 )  = 0 

T ( 4 , 2 , 1 )  = 0 

T ( 4 , 2 , 2 )  = 0 

T(4 ,2 ,3 )  = 0 

T ( 4 , 2 , 4 )  = 0 

T(4 ,3 ,1)  = 0 

T(4 ,3 ,2 )  = 0 

T ( 4 , 3 , 3 )  = 0 

T(4 ,3 ,4 )  = 0 

T(4 ,4 ,1 )  = 0 
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T(4,4,2) = 0 

T(4,4,3) = 0 

T(4,4,4) = 0 

Once t h e   C h r i s t o f f e l  symbols  of the  second  kind are known, t h e  components 
of t h e  Ricci tensor   can  be  der ived.  The ind iv idua l  components are 

R(1, l )  = -L( l ) -   (X( l ) ) /X( l )  

R(1,2) = 0 

R(1,3) = 0 

R(1,4) = 0 

R(2 , l )  = 0 

R(2,2) = -(1/2)E - L '  ( x ( l ) ) ~ ( l ) .   ( X ( l ) ) X ( l ) + E  
-L.  ( x ( l ) ) - l  

R(2,3) = 0 

R(2,4) = 0 

R(3, l )  = 0 

R(3,2) = 0 

R(3,3) = -(1/2)E -L '  ( x ( l ) )L( l ) .  (X( l ) )SIN2(X(2))X( l )+E-L. (X(1))SIN2(X(2))  

-SIN2 (X (2) ) 

R(3,4) = 0 

R(4, l )  = 0 

R(4,2) = 0 

R(4,3) = 0 

R(4,4) = 0 

G(1,J) and  R(1,J) are both known a t  t h i s   s t a g e   o f   t h e  program; t h e r e f o r e  
the   Ricc i   sca la r   can   be   ob ta ined .  I t  i s  given  by  the  fol lowing  equat ion 

R = -2E-L '  (x(1))/X(1)2+2E-L.  (x(l))L(l)-   (X(1))/X(1)+2/X(l)2 
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The preceding  information is next used  to  obtain  the  field  equations. 
The individual  equations  are 

ET(1,l) = E - L '  (x(1))/X(1)2+Lc1).  (X(l))/(E L. (xcl)))x(l) 

-E - L -  (x(l))L(l) - (X(l))/X(l) -l/x(l)2 

ET(1,2) = 0 

ET(1,3) = 0 

ET(1,4) '= 0 

ET(2,l) = 0 

ET(2,2) = -(1/2)E -L- (X(l))L(l) - (X(l))/X(l) 
ET(2,3) = 0 

ET(2,4) = 0 

ET(3,l) = 0 

ET(3,2) = 0 

ET(3,3) = -(1/2)E -L. (X(l))L(l).  (X(l))/X(l) 

ET(3,4) = 0 

ET(4,l) = 0 

ET(4,2) = 0 

ET(4,3) = 0 

ET(4,4) = E-L'  CXC1))/X(1)2-E-L'  (x(l))L(l)  (X(l))/X(l)-l/X(l)2 

The  equations of the  corresponding  trajectories  are: 

A(l) = E-L' (x(1))SIN2(X(2))X(1)V(3)2-(l/2)L(1) - (X(1))V(1)2+E-L*  (x(1))X(l)V(2)2 

A(2) = -2V(2)V(1)/X(1)+COS(X(2))SIN(X(2))V(3)2 

A(3) = -2V(l)V(3)/X(1)-2COS(X(2))V(2)V(3)/SIN(X(2)) 

A(4) = 0 
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The  de S i t ter   modeL As  already  indicated,  the  only  other  general 
relativistic  model  that  is  static  and  homogeneous  is  the  de  Sitter  universe. 
In  the  next  section  the  Schwarzschild  model  will  be  considered.  It  will  be 
found  to  have  the  same  form,  although  not  the  same  content  as  the  de  Sitter 
model.  Although  the  Schwarzschild  universe  is  inhomogeneous,  the  implicit 
functions L(x1) and M(xl) that  satisfy  its  field  equations  also  satisfy 
equation (23). In  view of these  considerations  the  de  Sitter  model  will  not 
be  formulated. 

A nonhomogeneous ease- The  Schwarzschild  model  represents  a  specially 
important  application of relativity  theory,  since  it  provides  a  treatment  of 
the  gravitational  field  surrounding  the  sun.  This  problem  was  first  studied 
by  Schwarzschild  in  1916,  and  the  results  obtained  were  used  to  distinguish 
between  the  predictions  of  the  Newtonian  theory of  gravitation  and  the  more 
exact  predictions of relativity  theory.  Since  the  space  surrounding  the  sun 
is  assumed  to  be  devoid  of  matter,  all  the  components of  the  energy  momentum 
tensor  are  zero.  In  this  case,  the  field  equations  have  been  shown  to  satisfy 
equation  (12) . That  is : 

Therefore,  the  components  of  the  Ricci  tensor  obtained  for  the  anisotropic 
model  and  satisfying  equation  (26)  yield  the  components of the  potential 
function f o r  the  field  surrounding  a  single  attracting  mass,  which  is 
spherically  symmetric. 

In  terms  of  conventional  mathematical  symbolism,  the  Schwarzschild  field 
equations  assume  the  following  form: 

R,, = sin2 x2 {e-L[l + T ( 2  x1 &l - 

R,, = e 1  dL dM 1  d2M - 12 - ;(3,’] = 0 (30) 
4 dxl dxl 2 dxl  dxl x1 dxl 

Ri j = O  for i #  j 

The  corresponding  trajectory  equations  are: 
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2 1 dL 
ds 

d2x3  2 dx' dx3 cot x2 d x 2  dx3) ds  ds  ds  ds 

d2x4 ( dM dxl dx4) ds dxl ds ds 
- =  "" 

(33) 

(34) 

It is  seen  that 

R3 3 = sin2 x2 - R,, 

and  there  are  therefore  only  three  equations  in L and M. In  this  connection, 
it  should be noted  that  the 10 equations  given  by  equations ( 8 )  or  (12)  are 
not  all  independent  since,  theoretically  at  least,  they  would  then  determine 
completely  the  metric  tensor  and  would  restrict  the  choice of  reference  system. 
Therefore,  there  can  be  no  more  than  six  independent  conditions  between  the 
components of R i j  to  permit a  free  choice  of  coordinate  system  in 
four-dimensional  space  (ref. 8). 

The  system of  10 nonlinear  partial  differential  equations 

for  the  10  unknown  functions  gij  is  very  complicated. The general  solution 
of this  system  is  not  known.  However,  for  the  case  considered  in  this  paper, 
it  is  possible  to  obtain a  closed-form  solution.  It  can  easily  be  deduced 
that 

L = -M 
and 

M a -L e = 1 + -   = e  
X 1 
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Hence, 

If a = -2m, the  metric ( 3 5 )  is  consistent  with  the  existence  of  one 
gravitating  mass  (m)  situated  at  the  origin  and  surrounded  by  empty  space. 

If  the  metric  tensor  inputs  (eqs. (17)) consisting of unknown  functions 
of x1  are  now  replaced  by  the  known  functions ( 3 5 ) ,  and the program re-run, 
the  trajectory  equations  are  obtained  in  the  following  form: 

CONCLUSIONS 

Symbolic  mathematical  computation  can  facilitate  the  formulation of 
mathematical  models.  This  has  been  demonstrated by using  the  method  to  recon- 
struct  several  existing  cosmological  models  and  their  associated  trajectory 
equations.  It  has  been  shown  that  such  models  can be derived  with  speed  and 
efficiency  on  present  generation  computers,  provided  they  are  equipped  with 
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formula  manipulation  compilers.  For  example,  in  the  case  of  the  Einstein  and 
de  Sitter  models,  the  computer  times  required  to  formulate  the  field  and  tra- 
jectory  equations  were 0.66 and  0.32  minutes,  respectively.  For  the  nonhomo- 
geneous  Schwarzschild  model,  the  corresponding  times  were 0.74 and  0.30  minutes, 
respectively.  In  addition  to  saving  man-hours  and  the  errors  to  which  humans 
are  prone,  the  method  facilitates  the  study of a  greater  variety  of  models. 

Ames  Research  Center 
National  Aeronautics  and  Space  Administration 

Moffett  Field,  Calif.,  94035,  June  16,  1970 
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